If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25z^2-144=0
a = 25; b = 0; c = -144;
Δ = b2-4ac
Δ = 02-4·25·(-144)
Δ = 14400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{14400}=120$$z_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-120}{2*25}=\frac{-120}{50} =-2+2/5 $$z_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+120}{2*25}=\frac{120}{50} =2+2/5 $
| -12m+24=-36 | | 11x-5x+165=11x+95 | | 2h/3-7=35/12 | | 10x=10x+6 | | 52x+52=-78-78 | | 5l=3l-5.5=60.5 | | 9-9/12x=4/12x-4 | | 29b+33+89=180 | | 5w-7+42=180 | | 4x+2=162 | | 24=1/4x3 | | 9z+54=180 | | 4(2x-8)^2+7=43 | | 3x-4x-1=22×1-3×-1 | | 2v+59+71=180 | | -2(x+2)^2+5=-27 | | 8y+60=180 | | 11y-9y-4=26.06 | | 3x^)+x+4=0 | | 5(x+6)-2x=24+x-10 | | 7•x+4=35 | | 2x-7x+10-10=180 | | 2x+9=8x-3= | | 6y+36=180 | | 5a+16=-3a-8 | | 5u+2=4 | | 420=7/6+x | | 121=t^2 | | 137+x=x | | 741=3(t) | | -x/7=-57 | | 11x-4x+132=11x+80 |